// Include after common.scad $extra_thickness_above_center = is_undef($extra_thickness_above_center) ? 0 : $extra_thickness_above_center; function default_fret_widths(zero_fret_width, other_fret_width) = flatten([[zero_fret_width], [ for (i = [1:$num_frets]) other_fret_width ]]); function default_neck_width_nut() = ($num_strings-1)*$string_spacing_nut + $string_margin*2; function default_neck_width_bridge() = ($num_strings-1)*$string_spacing_bridge + $string_margin*2; function neck_width(mm=0, fret=-9999) = lerp($neck_width_bridge, $neck_width_nut, (fret>-9999) ? (2^(-fret/12)) : (mm/fret_scale_length(0))); function get_fret_width(fret) = $fret_widths[clamp(0, fret, len($fret_widths)-1)]; function get_fret_height(fret) = sin($fret_angle) * get_fret_width(fret)/2; function get_max_fret_width() = max($fret_widths); function arc_starting_angle_to_height_ratio(angle) = ((1-cos(angle))/(sin(angle))); function get_max_fret_height() = arc_starting_angle_to_height_ratio($fret_angle) * get_max_fret_width()/2; function get_max_scallop_angle() = (is_undef($max_scallop_angle) || $max_scallop_angle <= 0) ? $fret_angle : $max_scallop_angle; function get_final_scallop_length() = $scallop_depth / arc_starting_angle_to_height_ratio(get_max_scallop_angle()); function get_final_scallop_() = $scallop_depth / arc_starting_angle_to_height_ratio(get_max_scallop_angle()); function get_end_of_fretboard() = after_fret($num_frets) - get_final_scallop_length(); function behind_fret(fret) = fret_scale_length(fret) + get_fret_width(fret)/2; function after_fret(fret) = fret_scale_length(fret) - get_fret_width(fret)/2; function string_spacing(y) = lerp($string_spacing_bridge, $string_spacing_nut, y/fret_scale_length(0)); function string_x(i, y) = ($num_strings-i-1)*string_spacing(y) - neck_width(y)/2 + $string_margin; module strings_reference(string_excess=80) { z_nut = $extra_thickness_above_center + $scallop_depth + get_max_fret_height(); y_nut = fret_scale_length(0); z_bridge = z_nut + 4; y_bridge = -string_excess; for (i = [0:$num_strings-1]) { hull() { d = $string_diameters_mm[i]; translate([string_x(i, y_bridge), y_bridge, z_bridge + d/2]) sphere(d=d, $fn=cyl_ld_fn); translate([string_x(i, y_nut), y_nut, z_nut + d/2]) sphere(d=d, $fn=cyl_ld_fn); } } } module neck(string_spacing=18, string_margin=4.5, num_strings=3, target_neck_thickness=15, target_neck_thickness_additional_points=[], scallop_depth=3, num_frets=24, fret_width=2.4, filler=false, inlays_only=false, side_markers_only=false, fret_layers_only=false, remove_fret_layers=false, engrave_markers=true) { fw2 = fret_width/2; neck_length = fret_scale_length(0)+fw2; neck_width = (num_strings-1)*string_spacing + string_margin*2; module neck_stock() { angle_excess = asin((scallop_depth+fw2)/target_neck_thickness); a0 = 90-angle_excess; a1 = 270+angle_excess; rotate([-90, 0, 0]) if (len(target_neck_thickness_additional_points) < 1) { linear_extrude(neck_length) polygon([for (i = [0:300]) let(a=lerp(a0, a1, i/300.0)) [neck_width*0.5*sin(a), -target_neck_thickness*cos(a)]]); // Ellipse } else { pts = flatten([[[neck_length, target_neck_thickness]], target_neck_thickness_additional_points]); echo(pts); for (i = [0:len(pts)-2]) { pt0 = pts[i]; pt1 = pts[i+1]; echo(i, pt0, pt1); render() hull() { translate([0,0,pt0[0]]) linear_extrude(0.01) polygon([for (i = [0:300]) let(a=lerp(a0, a1, i/300.0)) [neck_width*0.5*sin(a), -pt0[1]*cos(a)]]); // Ellipse translate([0,0,pt1[0]]) linear_extrude(0.01) polygon([for (i = [0:300]) let(a=lerp(a0, a1, i/300.0)) [neck_width*0.5*sin(a), -pt1[1]*cos(a)]]); // Ellipse } } } } module scallop(fret) { x0 = fret_scale_length(fret-1) - fw2; x1 = fret_scale_length(fret) + fw2; xmid = lerp(x0, x1, 0.5); // Radius it? arc = arc_points([[x0, scallop_depth], [x1, scallop_depth], [xmid, 0]]); // echo(arc); rotate([90, 0, 90]) linear_extrude(neck_width, center=true) polygon(arc); } module scallops() { for (fret = [0:num_frets]) { scallop(fret); } } module fret_bumps() { for (fret = [0:num_frets]) { translate([0, fret_scale_length(fret), scallop_depth]) rotate([0, 90]) cylinder(d=fret_width, h = neck_width, center = true, $fn=200); } } module intersect_fret_layers() { for (fret = [0:num_frets]) { translate([-500, fret_scale_length(fret)-fret_width/2, -500]) cube([1000, fret_width, 1000]); } // Some precision error with fret 0 :/ translate([-500, fret_scale_length(0)-fret_width/2+0.0006, -500]) cube([1000, fret_width, 1000]); } module fret_inlays() { for (num_text = fret_inlays) { fret = num_text[0]; if (fret <= num_frets) { x0 = fret_scale_length(fret-1); x1 = fret_scale_length(fret); diff = x0 - x1; translate([0, lerp(x0, x1, 0.5), -0.5]) linear_extrude(30) text(text = num_text[1], font = JP_Sans_Font, halign = "center", valign = "center", size = clamp(2, diff-fret_width*2-2, 10)); } } } module fret_side_markers() { for (num_text = fret_inlays) { fret = num_text[0]; if (fret <= num_frets) { x0 = fret_scale_length(fret-1); x1 = fret_scale_length(fret); diff = x0 - x1; mid = lerp(x0, x1, 0.67); rotate([0, -94, 0]) translate([0, mid, neck_width/2-3]) linear_extrude(50) rotate(-37) text(text = str(fret), font = JP_Serif_Font, halign = "right", valign = "center", size = 5); } } } module carved_stock() { render() difference() { neck_stock(); scallops(); scallop(num_frets+1); // Chop off anything above the frets translate([-neck_width, 0, scallop_depth]) cube([neck_width*2, $guitar_scale_length_mm*3, target_neck_thickness*3]); // Reduce rest of the body to 0 translate([-neck_width, 0, 0]) cube([neck_width*2, (fret_scale_length(num_frets)+fret_scale_length(num_frets+1))/2, target_neck_thickness*3]); } intersection() { fret_bumps(); neck_stock(); } } if (filler) { // Somewhat placeholder for now difference() { neck_stock(); scallop(25); translate([-neck_width, 0, scallop_depth]) cube([neck_width*2, $guitar_scale_length_mm*3, target_neck_thickness*3]); translate([-neck_width, 0, 0]) cube([neck_width*2, (fret_scale_length(25)+fret_scale_length(24))/2, target_neck_thickness*3]); } } else { render() intersection() { difference() { carved_stock(); if (engrave_markers) { fret_inlays(); fret_side_markers(); } if (remove_fret_layers) intersect_fret_layers(); } if (fret_layers_only || inlays_only || side_markers_only) union() { if (fret_layers_only) intersect_fret_layers(); if (inlays_only) fret_inlays(); if (side_markers_only) fret_side_markers(); } } } } module TaperNeck( target_neck_thickness_additional_points = [], filler = false, fret_side_marker_x_angle = -37, fret_side_marker_y_angle = -4, // $include_colours = [0, 1, 2, 3], // 0: Base neck/fretboard 1: Frets 2: Inlays 3: Side markers ){ neck_length = fret_scale_length(0) + get_fret_width(0)/2; z0 = $extra_thickness_above_center; // Deepest scallops hit here, => thinnest top of neck z1 = z0 + $scallop_depth; // Frets protrude from here z2 = z1 + get_max_fret_height(); // Nothing above this => thickest top of neck y2 = after_fret($num_frets); // bridge-side edge of final fret y1 = y2 - get_final_scallop_length(); module neck_stock() { angle_excess = asin(z2/$target_neck_thickness); a0 = 90-angle_excess; a1 = 270+angle_excess; rotate([-90, 0, 0]) if (len(target_neck_thickness_additional_points) < 1) { render() hull() { translate([0,0,neck_length-0.0001]) linear_extrude(0.0001) polygon([for (i = [0:300]) let(a=lerp(a0, a1, i/300.0)) [neck_width(neck_length)*0.5*sin(a), -$target_neck_thickness*cos(a)]]); // Ellipse translate([0,0,0]) linear_extrude(0.0001) polygon([for (i = [0:300]) let(a=lerp(a0, a1, i/300.0)) [neck_width(0)*0.5*sin(a), -$target_neck_thickness*cos(a)]]); // Ellipse } } else { pts = flatten([[[neck_length, $target_neck_thickness]], target_neck_thickness_additional_points]); echo(pts); for (i = [0:len(pts)-2]) { pt0 = pts[i]; pt1 = pts[i+1]; echo(i, pt0, pt1); render() hull() { translate([0,0,pt0[0]]) linear_extrude(0.01) polygon([for (i = [0:300]) let(a=lerp(a0, a1, i/300.0)) [neck_width*0.5*sin(a), -pt0[1]*cos(a)]]); // Ellipse translate([0,0,pt1[0]]) linear_extrude(0.01) polygon([for (i = [0:300]) let(a=lerp(a0, a1, i/300.0)) [neck_width*0.5*sin(a), -pt1[1]*cos(a)]]); // Ellipse } } } // Add any children to this so other functions will difference from the additions children(); } module scallop(fret) { x0 = fret_scale_length(fret) - get_fret_width(fret)/2; x_fret = fret_scale_length(fret+1) + get_fret_width(fret+1)/2; x1 = (fret < $num_frets) ? x_fret : (x0 - get_final_scallop_length()*2); xmid = lerp(x0, x1, 0.5); xdelta = x0-x1; maxdepth_angle = 90+arc_points_angle([[x0, z1], [x1, z1], [xmid, z0]]); // echo(str(maxdepth_angle)); a = min(get_max_scallop_angle(), maxdepth_angle); fn = 50; fn2 = fn * 2; ca = cos(a); sa = sin(a); r = xdelta / (2*sa); arc = [ for (i = [-fn:fn]) [xmid+xdelta*i/fn2, z1-r*(sqrt(1 - ((sa*i/fn)^2))-ca)] ]; // echo(arc); rotate([90, 0, 90]) linear_extrude($neck_width_bridge, center=true) polygon(arc); } module scallops() { for (fret = [0:$num_frets]) { scallop(fret); } } module fret_bump(fw, a = $fret_angle) { // a must be in range (0,90] for correct geometry fn = 50; fn2 = fn * 2; ca = cos(a); sa = sin(a); r = fw / (2*sa); arc = [ for (i = [-fn:fn]) [fw*i/fn2, r*(sqrt(1 - ((sa*i/fn)^2))-ca)] ]; // echo("fret_bump", a, ca, arc); rotate([90, 0, 90]) linear_extrude($neck_width_bridge, center=true) polygon(arc); } module fret_bumps() { for (fret = [0:$num_frets]) translate([0, fret_scale_length(fret), z1]) fret_bump(get_fret_width(fret)); } module intersect_fret_layers(all=true) { for (fret = [0:$num_frets]) { colour = is_undef($fret_colours) ? 1 : (len($fret_colours) > fret) ? $fret_colours[fret] : 1; if (all || list_has($include_colours, colour)) translate([-500, fret_scale_length(fret)-get_fret_width(fret)/2, -500]) cube([1000, get_fret_width(fret), 1000]); } // Some precision error with fret 0 :/ colour = is_undef($fret_colours) ? 1 : (len($fret_colours) > 0) ? $fret_colours[0] : 1; if (all || list_has($include_colours, colour)) translate([-500, fret_scale_length(0)-get_fret_width(0)/2+0.0006, -500]) cube([1000, get_fret_width(0), 1000]); } module fret_inlays() { for (num_text = fret_inlays) { fret = num_text[0]; if (fret <= $num_frets) { y0 = behind_fret(fret); y1 = after_fret(fret-1); y_mid = lerp(y0, y1, 0.5); max_height = y1 - y0 - 4; max_width = neck_width(y_mid) * 0.8; estimated_width_chars = len(num_text[1])*7/5; fontsize_from_max_width = max_width/estimated_width_chars; fontsize_from_max_height = max_height; // echo(str(max_width, " ", estimated_width_chars, " ", fontsize_from_max_height, " ", fontsize_from_max_width)); desired_fontsize = min(fontsize_from_max_height, fontsize_from_max_width); fontsize = clamp(2, desired_fontsize, 10); t = num_text[1]; // TODO: account for shallow scallops translate([0, y_mid, z0-0.5]) linear_extrude(30) { if (t == ".") { circle(d=fontsize*0.9, $fn=72); } else { text(text = num_text[1], font = JP_Sans_Font, halign = "center", valign = "center", size = fontsize); } } } } } module fret_side_markers() { for (num_text = fret_inlays) { fret = num_text[0]; if (fret <= (is_undef($last_fret_side_marker) ? $num_frets : $last_fret_side_marker)) { x0 = fret_scale_length(fret-1)-get_fret_width(fret-1)/2; x1 = fret_scale_length(fret)+get_fret_width(fret)/2; diff = x0 - x1; mid = lerp(x0, x1, 0.67); fontsize = min(5, (diff-1)*0.6); rotate([0, fret_side_marker_y_angle-90, 0]) translate([0, mid, neck_width(mid)/2-3]) linear_extrude(50) rotate(fret_side_marker_x_angle) text(text = str(fret), font = JP_Serif_Font, halign = "right", valign = "center", size = fontsize); } } } module carved_stock() { render() difference() { neck_stock() children(); scallops(); // Chop off anything above the frets translate([-$neck_width_bridge, 0, z1]) cube([$neck_width_bridge*2, $guitar_scale_length_mm*3, $target_neck_thickness*3]); // Reduce rest of the body to 0 translate([-$neck_width_bridge, 0, z0]) cube([$neck_width_bridge*2, y1, $target_neck_thickness*3]); } intersection() { fret_bumps(); neck_stock(); } } if (filler) { // Somewhat placeholder for now difference() { neck_stock(); scallop(25); translate([-$neck_width_bridge, 0, scallop_depth]) cube([$neck_width_bridge*2, $guitar_scale_length_mm*3, target_neck_thickness*3]); translate([-$neck_width_bridge, 0, 0]) cube([$neck_width_bridge*2, (fret_scale_length(25)+fret_scale_length(24))/2, target_neck_thickness*3]); } } else { has1 = list_has($include_colours, 1); has2 = list_has($include_colours, 2); has3 = list_has($include_colours, 3); if (list_has($include_colours, 0)) render() difference() { carved_stock() children(); intersect_fret_layers(); fret_inlays(); fret_side_markers(); } if (list_has($include_colours, 1)) render() intersection() { carved_stock() children(); intersect_fret_layers(false); } if (list_has($include_colours, 2)) render() intersection() { carved_stock() children(); fret_inlays(); } if (list_has($include_colours, 3)) render() intersection() { carved_stock() children(); fret_side_markers(); } if (list_has($include_colours, 4)) render() intersection() { carved_stock() children(); intersect_fret_layers(false); } } } module FlatBridge(saddle_height = 10, base_height = 6, y_len = 15) { // A bridge with no channel notch or piezo strip notch, to be printed more easily for coil-only guitars // Base render() difference() { // Flatten off a rounded cube r = 0.6; translate([-neck_width()/2, 0, -r]) round_cube([neck_width(), y_len, base_height+r], r=r); translate([-neck_width()/2, 0, -r]) cube([neck_width(), y_len, r]); // screw hole just in case translate([0, y_len/2, 0]) cylinder_outer(d=2.25, h=base_height); countersink = 3; translate([0, y_len/2, base_height-countersink]) cylinder_outer(d=5, h=countersink); } // String saddles - rule of thumb: string diameter multiplied by 4 // Make the thinnest string sit right at the front m = 4; saddle_y0 = 2.5; //1.2; saddle_y1 = -3.7; r0 = 0.85; y_start = y_len + min($string_diameters_mm)*m - (r0+saddle_y0); for (i = [0:$num_strings-1]) translate([($num_strings-i-1)*string_spacing(0) - neck_width()/2 + $string_margin, y_start - $string_diameters_mm[i]*m, base_height]) { step = ($preview) ? 9 : 3; r1 = r0 + $string_diameters_mm[i]*1.2; r2 = r0 + $string_diameters_mm[i]*1.1; translate([0, 0, saddle_height]) for (a=[90:step:270-step]) hull() { translate([-sin(a)*r1, 0, cos(a)*r2]) sphere(r=r0, $fn=cyl_ld_fn); translate([-sin(a+step)*r1, 0, cos(a+step)*r2]) sphere(r=r0, $fn=cyl_ld_fn); translate([-sin(a)*r1, saddle_y0, -saddle_height-r0]) sphere(r=r0, $fn=cyl_ld_fn); translate([-sin(a+step)*r1, saddle_y0, -saddle_height-r0]) sphere(r=r0, $fn=cyl_ld_fn); translate([-sin(a)*r1, saddle_y1, -saddle_height-r0]) sphere(r=r0, $fn=cyl_ld_fn); translate([-sin(a+step)*r1, saddle_y1, -saddle_height-r0]) sphere(r=r0, $fn=cyl_ld_fn); } } }