RhythmGame/singletons/Note.gd

309 lines
12 KiB
GDScript

tool
extends Node
#class_name Note
enum {NOTE_TAP, NOTE_HOLD, NOTE_STAR=2, NOTE_SLIDE=-2, NOTE_TOUCH=3, NOTE_TOUCH_HOLD=4, NOTE_ARROW, NOTE_ROLL}
enum SlideType {CHORD, ARC_CW, ARC_ACW, CHORD_TRIPLE, COMPLEX}
const DEATH_DELAY := 1.0 # This is touchy with the judgement windows and variable bpm.
const RELEASE_SCORE_TYPES := {
NOTE_HOLD: -NOTE_HOLD,
NOTE_SLIDE: NOTE_SLIDE,
NOTE_TOUCH_HOLD: -NOTE_TOUCH_HOLD,
NOTE_ROLL: -NOTE_ROLL
}
class NoteBase extends Resource:
var time_hit: float setget set_time_hit
var time_death: float
var column: int
var double_hit := false
var time_activated := INF
var missed := false
var is_break := false
func set_time_hit(value: float):
time_hit = value
time_death = time_hit + DEATH_DELAY
class NoteHittableBase extends NoteBase:
const hittable := true
class NoteTapBase extends NoteHittableBase:
func _init(time_hit: float, column: int, is_break:=false):
self.time_hit = time_hit
self.column = column
self.is_break = is_break
class NoteTap extends NoteTapBase:
var type := NOTE_TAP
func _init(time_hit: float, column: int, is_break:=false).(time_hit, column, is_break):
pass
class NoteStar extends NoteTapBase: # Fancy charts have naked slides which necessitates separation of Star and Slide :(
var type := NOTE_STAR
var duration := 1.0 # This is required for the spin speed
func _init(time_hit: float, column: int, is_break:=false).(time_hit, column, is_break):
pass
class NoteHoldBase extends NoteHittableBase:
var time_release: float setget set_time_release
var time_released := INF
var duration: float setget set_duration
var is_held: bool
func _init(time_hit: float, column: int, duration: float):
self.time_hit = time_hit
self.column = column
self.duration = duration
self.is_held = false
func set_time_hit(value: float):
time_hit = value
time_release = time_hit + duration
time_death = time_release + DEATH_DELAY
func set_time_release(value: float):
time_release = value
time_death = time_release + DEATH_DELAY
duration = time_release - time_hit
func set_duration(value: float):
duration = value
time_release = time_hit + duration
time_death = time_release + DEATH_DELAY
class NoteHold extends NoteHoldBase:
var type := NOTE_HOLD
func _init(time_hit: float, column: int, duration: float).(time_hit, column, duration):
pass
class NoteRoll extends NoteHoldBase:
var type := NOTE_ROLL
func _init(time_hit: float, column: int, duration: float).(time_hit, column, duration):
pass
class NoteSlide extends NoteBase: # Fancy charts have naked slides which necessitates separation of Star and Slide :(
const hittable := false
var type := NOTE_SLIDE
var time_release: float setget set_time_release
var duration: float setget set_duration
var column_release: int
var slide_type: int
var slide_id: int
var progress := INF
var missed_slide := false
var values: Dictionary
func _init(time_hit: float, column: int, duration:=0.0, column_release:=0, slide_type:=0):
self.time_hit = time_hit # The hit doesn't actually count for anything
self.column = column
self.duration = duration
self.time_release = time_hit + duration
self.time_death = time_release + DEATH_DELAY
self.column_release = column_release
self.slide_type = slide_type
self.values = {}
update_slide_variables()
func set_time_hit(value: float):
time_hit = value
time_release = time_hit + duration
time_death = time_release + DEATH_DELAY
func set_time_release(value: float):
time_release = value
time_death = time_release + DEATH_DELAY
duration = time_release - time_hit
func set_duration(value: float):
duration = value
time_release = time_hit + duration
time_death = time_release + DEATH_DELAY
func update_slide_variables():
match slide_type:
Note.SlideType.CHORD, Note.SlideType.CHORD_TRIPLE:
values.start = GameTheme.RADIAL_UNIT_VECTORS[column]
values.end = GameTheme.RADIAL_UNIT_VECTORS[column_release]
values.angle = (values.end - values.start).angle()
Note.SlideType.ARC_CW:
values.start_a = GameTheme.RADIAL_COL_ANGLES[column]
values.end_a = GameTheme.RADIAL_COL_ANGLES[column_release]
if values.end_a < values.start_a:
values.end_a += TAU
Note.SlideType.ARC_ACW:
values.start_a = GameTheme.RADIAL_COL_ANGLES[column]
values.end_a = GameTheme.RADIAL_COL_ANGLES[column_release]
if values.end_a > values.start_a:
values.end_a -= TAU
Note.SlideType.COMPLEX:
values.curve2d = Curve2D.new()
values.curve2d.bake_interval = 0.1 # TODO: play around with this
func get_position(progress: float) -> Vector2:
match slide_type:
Note.SlideType.CHORD, Note.SlideType.CHORD_TRIPLE:
return lerp(values.start, values.end, progress)
Note.SlideType.ARC_CW, Note.SlideType.ARC_ACW:
var circle_angle : float = lerp(values.start_a, values.end_a, progress)
return polar2cartesian(1.0, circle_angle)
Note.SlideType.COMPLEX:
progress *= values.curve2d.get_baked_length()
return values.curve2d.interpolate_baked(progress)
return Vector2(0.0, 0.0)
func get_points(per_radius: float = 10.0) -> Array:
# Returns PoolVector2Array positions, PoolRealArray angles
match slide_type:
Note.SlideType.COMPLEX:
var interval = 1.0/per_radius
if values.curve2d.bake_interval != interval:
values.curve2d.set_bake_interval(interval) # Setting this, even to the same value triggers a new bake
var positions: PoolVector2Array = values.curve2d.get_baked_points()
var angles = []
for i in len(positions)-1:
angles.append((positions[i+1]-positions[i]).angle())
positions.remove(0) # Don't need an arrow pointing at the start position
return [positions, PoolRealArray(angles)]
_:
var trail_length : int = int(floor(get_slide_length() * per_radius))
var angles = []
var positions = []
for i in trail_length:
angles.append(get_angle((i+1)/float(trail_length)))
positions.append(get_position((i+1)/float(trail_length)))
return [PoolVector2Array(positions), PoolRealArray(angles)]
func get_angle(progress: float) -> float:
match slide_type:
Note.SlideType.CHORD, Note.SlideType.CHORD_TRIPLE:
return values.angle
Note.SlideType.ARC_CW:
var circle_angle : float = lerp(values.start_a, values.end_a, progress)
return circle_angle + PI/2.0
Note.SlideType.ARC_ACW:
var circle_angle : float = lerp(values.start_a, values.end_a, progress)
return circle_angle - PI/2.0
Note.SlideType.COMPLEX:
# TODO: get a better tangent maybe?
progress = clamp(progress, 0.001, 0.999) # Yes this is scuffed
var l = values.curve2d.get_baked_length()
return (values.curve2d.interpolate_baked((progress+0.001)*l) - values.curve2d.interpolate_baked((progress-0.001)*l)).angle()
return 0.0
func get_slide_length() -> float:
# Return unit-circle (r=1) length of slide trail
match slide_type:
Note.SlideType.CHORD, Note.SlideType.CHORD_TRIPLE:
return 2*abs(sin((GameTheme.RADIAL_COL_ANGLES[column_release] - GameTheme.RADIAL_COL_ANGLES[column])/2))
Note.SlideType.ARC_CW:
return fposmod(GameTheme.RADIAL_COL_ANGLES[column_release] - GameTheme.RADIAL_COL_ANGLES[column], TAU)
Note.SlideType.ARC_ACW:
return fposmod(GameTheme.RADIAL_COL_ANGLES[column] - GameTheme.RADIAL_COL_ANGLES[column_release], TAU)
Note.SlideType.COMPLEX:
return values.curve2d.get_baked_length()
return 0.0
static func copy_note(note: NoteBase):
# Honestly disappointed I couldn't find a better, more OOP solution for this.
var newnote: NoteBase
match note.type:
NOTE_TAP:
newnote = NoteTap.new(note.time_hit, note.column, note.is_break)
NOTE_STAR:
newnote = NoteStar.new(note.time_hit, note.column, note.is_break)
NOTE_HOLD:
newnote = NoteHold.new(note.time_hit, note.column, note.duration)
NOTE_SLIDE:
newnote = NoteSlide.new(note.time_hit, note.column, note.duration, note.column_release, note.slide_type)
if note.slide_type == Note.SlideType.COMPLEX:
newnote.values.curve2d = note.values.curve2d
NOTE_ROLL:
newnote = NoteRoll.new(note.time_hit, note.column, note.duration)
newnote.double_hit = note.double_hit
return newnote
static func make_slide(time_hit: float, duration: float, column: int, column_release: int, slide_type:=SlideType.CHORD) -> NoteSlide:
return NoteSlide.new(time_hit, column, duration, column_release, slide_type)
static func make_touch(time_hit: float, location: Vector2) -> Dictionary:
return {type=NOTE_TOUCH, time_hit=time_hit, time_death=time_hit+DEATH_DELAY, location=location, double_hit=false}
static func make_touch_hold(time_hit: float, duration: float, location: Vector2) -> Dictionary:
var time_release := time_hit + duration
return {type=NOTE_TOUCH_HOLD, time_hit=time_hit, time_release=time_release, time_death=time_release+DEATH_DELAY, location=location, double_hit=false}
static func process_note_list(note_array: Array, check_doubles:=true):
# Preprocess double hits, assign Slide IDs
# If this were performance-critical, we'd single iterate it
# It's not though, so we lay it out simply
var slide_id := 0
if len(note_array):
# Doubles
if check_doubles:
for i in len(note_array)-1:
var note1 = note_array[i]
if not note1.hittable:
continue
for j in len(note_array)-1-i:
var note2 = note_array[i+j+1]
if not note2.hittable:
continue
if note1.time_hit == note2.time_hit:
note1.double_hit = true
note2.double_hit = true
else:
break
# Slides
for i in len(note_array):
if note_array[i].type == NOTE_SLIDE:
note_array[i].slide_id = slide_id
slide_id += 1
# These should probably get their own singleton later
const ORBIT_INNER_RADIUS = sin(deg2rad(22.5)) # ~0.38
const ORBIT_KAPPA = (sqrt(2)-1) * 4.0 / 3.0 # This is the length of control points along a tangent to approximate a circle (multiply by desired radius)
func curve2d_make_orbit(curve2d, rad_in, rad_out, ccw, rad_max_arc:=PI*0.25, kappa:=ORBIT_KAPPA, inner_radius:=ORBIT_INNER_RADIUS):
var d_sign = -1 if ccw else 1
var rad_2 = rad_in+PI*3/8*d_sign
var rad_2t = rad_2+PI*0.5*d_sign
var rad_3 = rad_out-PI*3/8*d_sign
var rad_3t = rad_3-PI*0.5*d_sign
var a_diff = wrapf((rad_3-rad_2)*d_sign, 0.0001, TAU+0.0001)
var n = ceil(a_diff/rad_max_arc)
var ad = a_diff/n
var k = kappa*inner_radius*(2*ad/PI) # Not geometrically correct scaling but reasonable for now
# curve2d.add_point(polar2cartesian(1.0, rad_in))
curve2d.add_point(polar2cartesian(inner_radius, rad_2), Vector2.ZERO, polar2cartesian(k, rad_2t))
for i in range(1, n):
var ang = rad_2 + i*ad*d_sign
curve2d.add_point(polar2cartesian(inner_radius, ang), polar2cartesian(k, ang-PI/2*d_sign), polar2cartesian(k, ang+PI/2*d_sign))
curve2d.add_point(polar2cartesian(inner_radius, rad_3), polar2cartesian(k, rad_3t))
# curve2d.add_point(polar2cartesian(1.0, rad_out))
func curve2d_make_sideorbit(curve2d: Curve2D, rad_in: float, rad_out: float, ccw: bool, rad_max_arc:=PI*0.25, kappa:=ORBIT_KAPPA, inner_radius:=ORBIT_INNER_RADIUS):
var d_sign := -1 if ccw else 1
var sideorbit_center := polar2cartesian(inner_radius, rad_in-PI*0.5*d_sign)
var rad_orbit_in := rad_in + PI*0.5*d_sign
var orbcenter_to_out := polar2cartesian(1.0, rad_out) - sideorbit_center
var rad_orbit_out := orbcenter_to_out.angle() - acos(inner_radius/orbcenter_to_out.length())*d_sign
var pos_orbit_out := sideorbit_center + polar2cartesian(inner_radius, rad_orbit_out)
var a_diff = wrapf((rad_orbit_out-rad_orbit_in)*d_sign, 0.0001, TAU+0.0001)
var n = ceil(a_diff/rad_max_arc)
var ad = a_diff/n
var k = kappa*inner_radius*(2*ad/PI) # Not geometrically correct scaling but reasonable for now
# curve2d.add_point(polar2cartesian(1.0, rad_in))
curve2d.add_point(Vector2.ZERO, Vector2.ZERO, polar2cartesian(k, rad_in+PI))
for i in range(1, n):
var ang = rad_orbit_in + i*ad*d_sign
curve2d.add_point(sideorbit_center + polar2cartesian(inner_radius, ang), polar2cartesian(k, ang-PI/2*d_sign), polar2cartesian(k, ang+PI/2*d_sign))
curve2d.add_point(pos_orbit_out, polar2cartesian(k, rad_orbit_out-PI*0.5*d_sign))
# curve2d.add_point(polar2cartesian(1.0, rad_out))