110 lines
5.4 KiB
GDScript
110 lines
5.4 KiB
GDScript
#tool
|
|
extends Node2D
|
|
|
|
var ring_px := 4
|
|
var receptor_px := 24
|
|
var shadow_px := 5
|
|
var shadow_color := Color.black
|
|
var center := Vector2(0.0, 0.0)
|
|
|
|
func make_ring_mesh(inner_vertices: int, thickness: float, radius: float, skew:=0.5, repeat_start:=true):
|
|
# This makes a trianglestrip around the ring, consisting of chords on the inside and tangents on the outside.
|
|
# The goal is to exchange some fragment and vertex processing load:
|
|
# - a full quad of the ring would be the maximum fragment load and minimum vertex load
|
|
# - a complex mesh closely following the outline of the ring would minimize discarded fragments at the cost of increased vertex processing
|
|
# - the ideal workload ratio is probably different for each GPU and also depends on other things our program is doing
|
|
assert(inner_vertices >= 3)
|
|
assert(thickness > 0.0)
|
|
assert(radius > 0.0)
|
|
# While values of 3 and 4 are mathematically possible, they result in half of the trianglestrip being degenerate for thin lines.
|
|
# Only values of 5 and above should be used practically.
|
|
var vertices = inner_vertices * 2
|
|
# For simplicity's sake, the width of the ring will be the full thickness at the receptor points.
|
|
# For high vertex counts a slightly more optimal mesh could be constructed based on the thickness at each arc of the ring and where it would be intersected by the outer tangent.
|
|
# Essentially, we will be making an inner polygon and an outer polygon.
|
|
var angle_increment = TAU/float(inner_vertices)
|
|
var angle_outer_offset = skew*angle_increment
|
|
var r1 = radius - thickness*0.5
|
|
# Outer polygon side-length = inner side-length / sin(inside angle/2)
|
|
# inside angle for a polygon is pi-tau/n. We already precalculated tau/n for other purposes.
|
|
var r2 = (radius + thickness*0.5)/sin((PI-angle_increment)/2)
|
|
|
|
var vertex_list = PoolVector2Array()
|
|
var inner_list = PoolVector2Array()
|
|
var outer_list = PoolVector2Array()
|
|
for i in inner_vertices:
|
|
var angle_i = i * angle_increment
|
|
var angle_o = angle_i + angle_outer_offset
|
|
vertex_list.push_back(polar2cartesian(r1, angle_i))
|
|
vertex_list.push_back(polar2cartesian(r2, angle_o))
|
|
inner_list.push_back(vertex_list[-2])
|
|
outer_list.push_back(vertex_list[-1])
|
|
if repeat_start:
|
|
vertex_list.push_back(vertex_list[0])
|
|
vertex_list.push_back(vertex_list[1])
|
|
inner_list.push_back(vertex_list[0])
|
|
outer_list.push_back(vertex_list[1])
|
|
return [vertex_list, inner_list, outer_list]
|
|
|
|
func triangle_area(a: Vector2, b: Vector2, c: Vector2) -> float:
|
|
return 0.5 * abs((a.x-c.x)*(b.y-a.y) - (a.x-b.x)*(c.y-a.y))
|
|
|
|
func inscribe_polygon_area(r: float, sides: int) -> float:
|
|
return 0.5 * sides * r * r * sin(TAU/sides)
|
|
func circumscribe_polygon_area(r: float, sides: int) -> float:
|
|
return sides * r * r * tan(PI/sides)
|
|
|
|
func arc_point_list(center: Vector2, radius: float, angle_from:=0.0, angle_to:=360.0, points:=90) -> PoolVector2Array:
|
|
var point_list = PoolVector2Array()
|
|
for i in range(points):
|
|
var angle = deg2rad(angle_from + i * (angle_to - angle_from) / (points-1))
|
|
# point_list.push_back(center + Vector2(cos(angle), sin(angle)) * radius)
|
|
point_list.push_back(center + polar2cartesian(radius, angle))
|
|
return point_list
|
|
|
|
func draw_old(circles:=true, shadows:=true): # Receptor ring
|
|
var receptor_circle := arc_point_list(center, GameTheme.receptor_ring_radius, 0.0, 360.0, 360)
|
|
var receptor_centers := arc_point_list(center, GameTheme.receptor_ring_radius, Rules.FIRST_COLUMN_ANGLE_DEG, Rules.FIRST_COLUMN_ANGLE_DEG+360.0-Rules.COLS_ANGLE_DEG, Rules.COLS)
|
|
|
|
if shadows:
|
|
#draw_polyline(receptor_circle, shadow_color, ring_px + shadow_px, true)
|
|
draw_polyline(receptor_circle, Color.darkblue, ring_px + shadow_px, true)
|
|
if circles:
|
|
for i in range(len(receptor_centers)):
|
|
# draw_circle(receptor_centers[i], (receptor_px + shadow_px)/2, shadow_color)
|
|
draw_circle(receptor_centers[i], (receptor_px + shadow_px)/2, Color.darkblue)
|
|
|
|
draw_polyline(receptor_circle, GameTheme.receptor_color, ring_px, true)
|
|
if circles:
|
|
for i in range(len(receptor_centers)):
|
|
draw_circle(receptor_centers[i], receptor_px/2, GameTheme.receptor_color)
|
|
|
|
|
|
func _draw():
|
|
draw_old(true, true)
|
|
var mesh_v = $VerticesSlider.value
|
|
var skew = $SkewSlider.value
|
|
var dbg_color = Color.red
|
|
var ring_thickness = receptor_px + shadow_px
|
|
var ring_vertices = make_ring_mesh(mesh_v, ring_thickness, GameTheme.receptor_ring_radius, skew)
|
|
var estimated_area = circumscribe_polygon_area(GameTheme.receptor_ring_radius+ring_thickness*0.5, mesh_v) - inscribe_polygon_area(GameTheme.receptor_ring_radius-ring_thickness*0.5, mesh_v)
|
|
var ideal_ring_area = PI * (pow(GameTheme.receptor_ring_radius+(receptor_px+shadow_px)/2, 2) - pow(GameTheme.receptor_ring_radius-(receptor_px+shadow_px)/2, 2))
|
|
|
|
draw_polyline(ring_vertices[0], dbg_color)
|
|
draw_polyline(ring_vertices[1], dbg_color)
|
|
draw_polyline(ring_vertices[2], dbg_color)
|
|
|
|
# var l = len(ring_vertices)
|
|
# for i in l:
|
|
## estimated_area += triangle_area(ring_vertices[i], ring_vertices[(i+1)%l], ring_vertices[(i+2)%l])
|
|
var quad_area = 4*pow(GameTheme.receptor_ring_radius+(receptor_px+shadow_px)/2, 2)
|
|
var fps = Performance.get_monitor(Performance.TIME_FPS)
|
|
$"/root/main/InputHandler".text = "Vertices: %d*2 Skew: %.3f\nArea: %.0f\n(%.0f%% ideal ring)\n(%.0f%% quad)\nFPS: %.0f"%[mesh_v, skew, estimated_area, 100.0*estimated_area/ideal_ring_area, 100.0*estimated_area/quad_area, fps]
|
|
# ._draw()
|
|
|
|
func _ready():
|
|
$"/root".connect("size_changed", self, "update")
|
|
|
|
func _process(delta):
|
|
if not Engine.editor_hint:
|
|
update() |