297 lines
10 KiB
Python
297 lines
10 KiB
Python
from helpers import *
|
|
input_map, _, input_directions = read_day(22, False).partition('\n\n')
|
|
input_map = input_map.split('\n')
|
|
|
|
sample_map, _, sample_directions = '''
|
|
...#
|
|
.#..
|
|
#...
|
|
....
|
|
...#.......#
|
|
........#...
|
|
..#....#....
|
|
..........#.
|
|
...#....
|
|
.....#..
|
|
.#......
|
|
......#.
|
|
|
|
10R5L5R10L4R5L5
|
|
'''.strip('\n').partition('\n\n')
|
|
sample_map = sample_map.split('\n')
|
|
|
|
instruction_regex = re.compile(r'((?:\d+)|[RL])')
|
|
# print(instruction_regex.findall(sample_directions))
|
|
def navigate(input_map: list[str], input_directions: str) -> int:
|
|
height = len(input_map)
|
|
print(f'height is {height}')
|
|
directions = instruction_regex.findall(input_directions)
|
|
y = 0
|
|
x = input_map[y].index('.')
|
|
print(input_map[y])
|
|
print(input_map[-1])
|
|
facing = 0 # clockwise
|
|
for direction in directions:
|
|
# print(x, y, facing)
|
|
if direction == 'L':
|
|
facing = (facing-1) % 4
|
|
elif direction == 'R':
|
|
facing = (facing+1) % 4
|
|
else:
|
|
steps = int(direction)
|
|
# print(f'moving {steps} steps in facing {facing}')
|
|
if facing == 0: # Right ->
|
|
row = input_map[y]
|
|
for i in range(steps):
|
|
nx = x + 1
|
|
if nx >= len(row) or row[nx] == ' ': # wrap around
|
|
first_row_wall = 1_000_000
|
|
try:
|
|
first_row_wall = row.index('#')
|
|
except:
|
|
print(f'no wall in row {y}, moving to {row.index(".")}')
|
|
print(row)
|
|
pass
|
|
first_row_space = 1_000_000
|
|
try:
|
|
first_row_space = row.index('.')
|
|
except:
|
|
print(f'no space in row {y}')
|
|
pass
|
|
if first_row_wall <= first_row_space:
|
|
# print('hit wrapped wall')
|
|
break
|
|
else:
|
|
x = first_row_space
|
|
elif row[nx] == '#': # wall, stop
|
|
# print('hit wall')
|
|
break
|
|
else:
|
|
x = nx
|
|
# print('finished moving right')
|
|
elif facing == 2: # Left <-
|
|
row = input_map[y]
|
|
for i in range(steps):
|
|
nx = x - 1
|
|
if nx < 0 or row[nx] == ' ': # wrap around
|
|
nx = len(row) - 1
|
|
if row[nx] == '#':
|
|
# print('hit wrapped wall wrapping left')
|
|
break
|
|
else:
|
|
print(f'wrapping left on row {y} - from {x} to {nx}')
|
|
x = nx
|
|
elif row[nx] == '#': # wall, stop
|
|
break
|
|
else:
|
|
x = nx
|
|
elif facing == 1: # Down v
|
|
for i in range(steps):
|
|
ny = y + 1
|
|
if ny >= height or x >= len(input_map[ny]) or input_map[ny][x] == ' ': # wrap around
|
|
result = None
|
|
for r, row in enumerate(input_map):
|
|
if len(row) > x and row[x] != ' ':
|
|
if row[x] == '#':
|
|
break
|
|
else:
|
|
result = r
|
|
break
|
|
if result is None:
|
|
break
|
|
else:
|
|
y = result
|
|
elif input_map[ny][x] == '#': # wall, stop
|
|
break
|
|
else:
|
|
y = ny
|
|
elif facing == 3: # Up ^
|
|
for i in range(steps):
|
|
ny = y-1
|
|
if ny < 0 or x >= len(input_map[ny]) or input_map[ny][x] == ' ': # wrap around
|
|
result = None
|
|
for r, row in enumerate(reversed(input_map)):
|
|
if len(row) > x and row[x] != ' ':
|
|
if row[x] == '#':
|
|
break
|
|
else:
|
|
print(f'wrapping up from {y} to {r}')
|
|
result = height-1-r
|
|
break
|
|
if result is None:
|
|
break
|
|
else:
|
|
y = result
|
|
elif input_map[ny][x] == '#': # wall, stop
|
|
break
|
|
else:
|
|
y = ny
|
|
print(x, y, facing)
|
|
return 1000*(y+1) + 4*(x+1) + facing
|
|
|
|
RIGHT, DOWN, LEFT, UP = 0, 1, 2, 3
|
|
def navigate_cube(input_map: list[str], input_directions: str, square_size=50) -> int:
|
|
# Map is laid out like
|
|
# 14
|
|
# 2
|
|
# 53
|
|
# 6
|
|
# So (5 opposite 4) (1 opposite 3) (2 opposite 6)
|
|
# def tile(i: int, offset: int = 0, rev_offset: bool = False) -> int:
|
|
# o = offset % square_size
|
|
# base = i * square_size
|
|
# if rev_offset:
|
|
# return base + (square_size-1) - o
|
|
# return base + o
|
|
|
|
def edge_wrap(x, y, facing, i, j, next_facing):
|
|
# Get position along edge
|
|
if facing == RIGHT:
|
|
position = y % square_size
|
|
elif facing == DOWN:
|
|
position = x % square_size
|
|
elif facing == LEFT:
|
|
position = (square_size - 1) - (y % square_size)
|
|
elif facing == UP:
|
|
position = (square_size - 1) - (x % square_size)
|
|
# Align this position to new edge
|
|
if next_facing == RIGHT:
|
|
return (i*square_size), ((j+1)*square_size - 1 - position), next_facing
|
|
elif next_facing == DOWN:
|
|
return ((i+1)*square_size - 1 - position), (j*square_size), next_facing
|
|
elif next_facing == LEFT:
|
|
return ((i+1)*square_size - 1), (j*square_size + position), next_facing
|
|
elif next_facing == UP:
|
|
return (i*square_size + position), ((j+1)*square_size - 1), next_facing
|
|
# if next_facing == RIGHT:
|
|
# return (i*square_size), (j*square_size + position), next_facing
|
|
# elif next_facing == DOWN:
|
|
# return (i*square_size + position), (j*square_size), next_facing
|
|
# elif next_facing == LEFT:
|
|
# return ((i+1)*square_size - 1), ((j+1)*square_size - 1 - position), next_facing
|
|
# elif next_facing == UP:
|
|
# return ((i+1)*square_size - 1 - position), ((j+1)*square_size - 1), next_facing
|
|
|
|
|
|
|
|
height = len(input_map)
|
|
print(f'height is {height}')
|
|
directions = instruction_regex.findall(input_directions)
|
|
y = 0
|
|
x = input_map[y].index('.')
|
|
print(input_map[y])
|
|
print(input_map[-1])
|
|
facing = 0 # clockwise
|
|
for direction in directions:
|
|
# print(x, y, facing)
|
|
if direction == 'L':
|
|
print('turning L')
|
|
facing = (facing-1) % 4
|
|
elif direction == 'R':
|
|
print('turning R')
|
|
facing = (facing+1) % 4
|
|
else:
|
|
steps = int(direction)
|
|
for i in range(steps):
|
|
# print(x,y,facing)
|
|
print(f'Tile ({x//square_size},{y//square_size}) Offset ({x%square_size},{y%square_size}) Facing {facing} [{x},{y}]')
|
|
nx, ny, n_facing = x, y, facing
|
|
if facing == 0: # Right ->
|
|
nx = x + 1
|
|
if nx >= len(input_map[y]) or input_map[y][nx] == ' ': # wrap around
|
|
# 14
|
|
# 2
|
|
#53
|
|
#6
|
|
if y < square_size:
|
|
print('going right from 4 wraps to the right of 3 (right -> left)')
|
|
nx, ny, n_facing = edge_wrap(x, y, facing, 1, 2, LEFT)
|
|
if y < 2*square_size:
|
|
print('going right from 2 wraps to the bottom of 4 (right -> up)')
|
|
nx, ny, n_facing = edge_wrap(x, y, facing, 2, 0, UP)
|
|
elif y < 3*square_size:
|
|
print('going right from 3 wraps to the right of 4 (right -> left)')
|
|
nx, ny, n_facing = edge_wrap(x, y, facing, 2, 0, LEFT)
|
|
elif y < 4*square_size:
|
|
print('going right from 6 wraps to the bottom of 3 (right -> up)')
|
|
nx, ny, n_facing = edge_wrap(x, y, facing, 1, 2, UP)
|
|
else:
|
|
raise ValueError(f'Something went wrong wrapping right at nx={nx}')
|
|
elif facing == 2: # Left <-
|
|
nx = x - 1
|
|
if nx < 0 or input_map[y][nx] == ' ': # wrap around
|
|
# 14
|
|
# 2
|
|
#53
|
|
#6
|
|
if y < square_size:
|
|
print('going left from 1 wraps to the left of 5 (left -> right)')
|
|
nx, ny, n_facing = edge_wrap(x, y, facing, 0, 2, RIGHT)
|
|
elif y < 2*square_size:
|
|
print('going left from 2 wraps to the top of 5 (left -> down)')
|
|
nx, ny, n_facing = edge_wrap(x, y, facing, 0, 2, DOWN)
|
|
elif y < 3*square_size:
|
|
print('going left from 5 wraps to the left of 1 (left -> right)')
|
|
nx, ny, n_facing = edge_wrap(x, y, facing, 1, 0, RIGHT)
|
|
elif y < 4*square_size:
|
|
print('going left from 6 wraps to the top of 1 (left -> down)')
|
|
nx, ny, n_facing = edge_wrap(x, y, facing, 1, 0, DOWN)
|
|
else:
|
|
raise ValueError(f'Something went wrong wrapping left at nx={nx}')
|
|
elif facing == 1: # Down v
|
|
ny = y + 1
|
|
if ny >= height or x >= len(input_map[ny]) or input_map[ny][x] == ' ': # wrap around
|
|
# 14
|
|
# 2
|
|
#53
|
|
#6
|
|
if x < square_size:
|
|
print('going down from 6 wraps to the top of 4 (down -> down)')
|
|
nx, ny, n_facing = edge_wrap(x, y, facing, 2, 0, DOWN)
|
|
elif x < 2*square_size:
|
|
print('going down from 3 wraps to the right of 6 (down -> left)')
|
|
nx, ny, n_facing = edge_wrap(x, y, facing, 0, 3, LEFT)
|
|
elif x < 3*square_size:
|
|
print('going down from 4 wraps to the right of 2 (down -> left)')
|
|
nx, ny, n_facing = edge_wrap(x, y, facing, 1, 1, LEFT)
|
|
else:
|
|
raise ValueError(f'Something went wrong wrapping down from ny={ny}')
|
|
elif facing == 3: # Up ^
|
|
ny = y-1
|
|
if ny < 0 or x >= len(input_map[ny]) or input_map[ny][x] == ' ': # wrap around
|
|
# 14
|
|
# 2
|
|
#53
|
|
#6
|
|
if x < square_size:
|
|
print('going up from 5 wraps to the left of 2 (up -> right)')
|
|
nx, ny, n_facing = edge_wrap(x, y, facing, 1, 1, RIGHT)
|
|
elif x < 2*square_size:
|
|
print('going up from 1 wraps to the left of 6 (up -> right)')
|
|
nx, ny, n_facing = edge_wrap(x, y, facing, 0, 3, RIGHT)
|
|
elif x < 3*square_size:
|
|
print('going up from 4 wraps to the bottom of 6 (up -> up)')
|
|
nx, ny, n_facing = edge_wrap(x, y, facing, 0, 3, UP)
|
|
else:
|
|
raise ValueError(f'Something went wrong wrapping up from ny={ny}')
|
|
if input_map[ny][nx] == '#': # wall, stop
|
|
print(f'Hit wall at [{nx},{ny}]')
|
|
break
|
|
else: # move to new position and facing
|
|
x, y, facing = nx, ny, n_facing
|
|
print(f'Tile ({x//square_size},{y//square_size}) Offset ({x%square_size},{y%square_size}) Facing {facing}')
|
|
print(x, y, facing)
|
|
return 1000*(y+1) + 4*(x+1) + facing
|
|
|
|
# print(navigate_cube(sample_map, sample_directions))
|
|
print(navigate_cube(input_map, input_directions)) # Not 19317, not 5501, not 43253, not 59396, not 7287
|
|
# 52263???
|
|
# You begin the path in the leftmost open tile of the top row of tiles. Initially, you are facing to the right (from the perspective of how the map is drawn).
|
|
|
|
# To finish providing the password to this strange input device, you need to determine numbers for your final row, column, and facing as your final position appears from the perspective of the original map.
|
|
# Rows start from 1 at the top and count downward; columns start from 1 at the left and count rightward.
|
|
# (In the above example, row 1, column 1 refers to the empty space with no tile on it in the top-left corner.)
|
|
# Facing is 0 for right (>), 1 for down (v), 2 for left (<), and 3 for up (^). The final password is the sum of 1000 times the row, 4 times the column, and the facing.
|
|
|
|
# In the above example, the final row is 6, the final column is 8, and the final facing is 0. So, the final password is 1000 * 6 + 4 * 8 + 0: 6032.
|